Гидравлические жидкости - Definition. Was ist Гидравлические жидкости
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Гидравлические жидкости - definition

Физика жидкости

ГИДРАВЛИЧЕСКИЕ ЖИДКОСТИ      
применяют в машинах и механизмах для передачи усилий. Должны быть стабильны к окислению, инертны к материалам деталей гидросистемы, иметь низкую температуру застывания и высокую температуру вспышки. В качестве гидравлических жидкостей применяют некоторые индустриальные масла, спирто-глицериновые растворы, полиорганосилоксаны, фторуглероды и др.
Гидравлические жидкости      

жидкости, применяемые в машинах и механизмах для передачи усилий (см. Гидравлическая передача, Гидравлический двигатель, Гидродинамическая передача и Гидропередача объёмная). Г. ж. должны обладать высокой стабильностью против окисления, малой вспениваемостью, инертностью к материалам деталей гидросистемы, пологой кривой вязкости, низкой температурой застывания и высокой температурой вспышки. Нефтехимическая промышленность выпускает более 20 сортов минеральных масел, используемых в гидравлических системах (см. табл.).

В ряде случаев в качестве Г. ж. применяют некоторые индустриальные и моторные масла. Большинство Г. ж. содержит антиокислительные, антипенные и др. присадки.

Свойства некоторых гидравлических жидкостей

----------------------------------------------------------------------------------------------------------------------------------------

| Жидкости | Вязкость при 50° | tзаст, °С | tвсп, °С |

| | С, м2/сек | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Масло гидравлич. для автоматич. линий | (25 - 35)•10-6* | -10 | 190 |

| металлорежущих станков | | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Масло для прессов | 1•10-7* | -15 | 200 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Масло для гидравлич. передач | (11-14) •10-6 | -28 | 165 |

| тепловозов ГТ-50 | | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Масло для гидросистем автомобилей: | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| гидромеханич. трансмиссий | (3,5-4) •10-6* | -45 | 160 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| гидротрансформаторов и автоматич. | (23-30) •10-6 | -40 | 175 |

| коробок | | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| гидроусилителя руля | (12-14) •10-6 | -45 | 163 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Масло для высоконагруженных | 20•10-6 | -50 | 150 |

| механизмов (ЭШ) | | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Жидкость амортизаторная (АЖ-12Т) | 12•10-6 | -55 | 165 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Жидкость гидротормозная (масло ГТН) | 1•10-7 | -63 | 92 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Спирто-глицериновые жидкости: | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| СГ | 6,2•10-6 | -50 | 28 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| СВГ | 2,5•10-6 | -60 | 28 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| СВГ-2 | 7,5•10-6 | -50 | 30 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Спирто-касторовые жидкости: | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| ЭСК | (8,2-8,6) •10-6 | -25 | 12 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| БСК | (9,6-13,8) •10-6 | -25 | 14 |

----------------------------------------------------------------------------------------------------------------------------------------

* При 100°C.

Лит.: Нефтепродукты. Справочник, под ред. Б. В. Лосикова, М., 1966; Моторные и реактивные масла и жидкости, под ред. К. К. Папок и Е. Г. Семенидо, 4 изд., [М., 1964].

Н. Г. Пучков.

Физика жидкостей         
Физика жидкостей (физика жидкого состояния вещества) — раздел физики, в котором изучаются механические и физические свойства жидкостей. Статистическая теория жидкостей является разделом статистической физики.

Wikipedia

Физика жидкостей

Физика жидкостей (физика жидкого состояния вещества) — раздел физики, в котором изучаются механические и физические свойства жидкостей. Статистическая теория жидкостей является разделом статистической физики. Важнейшим результатом является вывод уравнений гидродинамики из уравнений Лиувилля, реализованный Н. Н. Боголюбовым в 1948 году. В физике квантовых жидкостей изучается явление сверхтекучести, нашедшее объяснение в работах Н. Н. Боголюбова 1947—1949 годов.

Успехи теории фазовых переходов между газообразным и жидким состоянием вещества, созданной Ван-дер-Ваальсом, укрепили представления о структурной близости этих состояний, как неупорядоченных и различающихся лишь плотностью частиц. После первых ренгеноструктурных исследований распределения частиц в жидкости выяснилось, что жидкости не являются бесструктурными. В теории рассеяния света в жидкости, разработанной Цернике и Пирсом в 1927 году, возникает функция распределения. Я. И. Френкель ввел представление о колебательно-поступательном движении молекул в жидкостях и развил кинетические модели в физике жидкостей. Строгая статистическая теория жидкостей была построена в работах Н. Н. Боголюбовым в 1947—1949 годах. И. З. Фишер использовал цепочку уравнений Боголюбова во втором порядке для описания жидкости. Также, И. З. Фишер создал лагранжеву теорию тепловых гидродинамических флуктуаций. В предисловии автора к русскому изданию своей книги К. А. Крокстон писал в 1976 году: «Последние два или три десятилетия физика жидкого состояния … достигла значительных успехов, в основном благодаря пионерским работам советских авторов — главным образом Н. Н. Боголюбова, Я. И. Френкеля и И. З. Фишера».

Was ist ГИДРАВЛИЧЕСКИЕ ЖИДКОСТИ - Definition